
VSR-N - through wall valve square

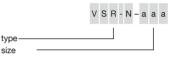
Туре	L [mm]	
VSR-N 400	400	
VSR-N 600	600	
VSR-N 800	800	
VSR-N 1000	1000	

hole size = $(L - 95) \times 60 \,\text{mm}$

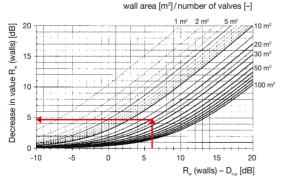
Technical parameters

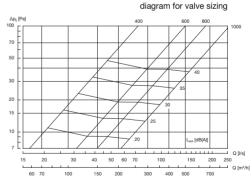
The VSR-N is a square through-wall valve designed for direct wall installation. The VSR-N consists of two square face panels with sound insulation that are mounted on both sides of the wall. These are connected using the perforated wall extensions supplied. This solution provides an excellent sound attenuation value.

- · high flow rate
- · neutral design
- · front panels with silencers
- · for installation in wall thicknesses 95-165 mm


Maintenance

The faceplates can be removed to allow cleaning of the valve internals. The visible parts of the valve can be cleaned in the normal way (with a duster).


Materials and surfaces


Installation brackets - galvanised steel face panels - galvanised steel Standard finish - powder coated Standard colour - RAL 9010

Example of order execution

Characteristics

For a rough estimate it is possible for calculus, use directly the R, value of the wall

Example:

R, (wall) 50 dB D, (valve) 44 dB $R_w - D_{oa} = 6 dB$ 20 m² Wall area $20 \text{ m}^2 / 1 = 20 \text{ m}^2$ Number of valves

Resulting reduction R, (walls):

 $\approx 50 - 5 = 45 \text{ dB}$ R_{res} value for wall with valve

The calculation can also be done using a general formula:

$$R_{\text{res}} = 10 \text{ x Log } \left(\frac{S}{(10 \text{ m}^2 \text{ x } 10^{-0.1 \times D_{\text{res}}}) + (S \text{ x } 10^{-0.1 \times R_{\text{e}}})} \right)$$

Where it is:

 R_{res} - the resulting reduced value for the wall with the valve

s - wall area

- D_{n.e} value of the valve D,,

- R-value of the wall without valve R_w

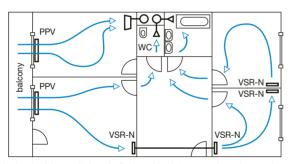
VSR-N - through wall valve square

Example of calculation

If through-wall valves are sized, the drop in sound insulation properties of the wall must be determined. For this calculation, the wall area must be known, as well as the sound insulation value R. The sound insulation drop is a function of the Dn,e value of the valve. Dn,e is the R-value appropriate to the valve and is determined for a transmission area of 10 m₂ in accordance with ISO 140-10. The Dn,e value can be recalculated for other transmission areas using the table below.

Area [m²]	10	2	1
Correction [dB]	0	-7	-10

The diagram below shows the decrease in the value of the wall impermeability when using through-wall valves in the specified octave bands.


Flow

The flow rate q (l/s) and (m³/h), the total pressure loss Pt [Pa] and the noise level $L_{\mbox{\tiny max}}$ [dB(A)] are determined for the valves on both sides of the wall.

Normalized difference in D., levels

Туре	$D_{n,e}$			
	wall with internal insulation 120 mm	wall with internal insulation 75 mm	solid wall without internal insulation	
VSR-N 400	44	42	36	
VSR-N 600	42	40	35	
VSR-N 800	41	39	33	
VSR-N 1000	40	38	32	

Additional illustration

schematic sketch of the ventilation of a flat in residential construction using supply and passage elements

VSR-N is a pass-through element suitable for central ventilation systems with CRxB fans or for decentral systems equipped with e.g. SILENT ECO fans