# VSC-N – through wall valve circular







| Туре      | D    | Α    | в    | С    | Е    |
|-----------|------|------|------|------|------|
|           | [mm] | [mm] | [mm] | [mm] | [mm] |
| VSC-N 100 | 100  | 202  | 25   | 50   | 92   |
| VSC-N 125 | 125  | 252  | 25   | 50   | 110  |
| VSC-N 160 | 160  | 302  | 25   | 50   | 138  |

## Technical parameters

The VSC-N is a circular through-wall valve, designed to be installed directly on the wall. VSC-N consists of two circular face panels with sound insulation, which are mounted on both sides of the wall. This solution provides an excellent sound attenuation value. The panels can be connected by a perforated wall element, which is not included and must be ordered separately.

- · neutral design
- · front panels with silencers

#### Maintenance

The face panels can be removed to allow cleaning of the valve internals. The visible parts of the valve can be cleaned in the normal way (with a duster).

Materials and surfaces

Installation brackets - galvanised steel Front panels - galvanised steel Standard finish - powder coated Standard colour - RAL 9010

Example of order execution

wall valve

type size



## Additional illustration



schematic sketch of the ventilation of a flat in residential construction using supply and passage elements

### Example of calculation

<u>7</u><sup>2</sup>

If through-wall valves are sized, it is necessary to determine the drop in sound insulation properties of the wall. For this calculation, the wall area must be known, as well as the sound insulation value R. The drop in sound insulation is a function of the value of Dn,e of the valve. Dn,e is the R-value appropriate to the valve and is determined for a transmission area of 10 m2 in accordance with ISO 140-10. The Dn,e value can be recalculated for other transmission areas using the table below.

| Area [m <sup>2</sup> ] | 10 | 2  | 1   |
|------------------------|----|----|-----|
| Correction [dB]        | 0  | -7 | -10 |

The diagram below shows the decrease in the value of the wall impermeability when using through-wall valves in the specified octave bands.

#### Flow

The flow rate q (I/s) and (m<sup>3</sup>/h), the total pressure drop Pt [Pa] and the noise level  $L_{\rm we}$  [dB(A)] are determined for valves on both sides of the wall.



VSC-N is a pass-through element suitable for central ventilation systems with CRxB-N fans or for decentral systems equipped with e.g. SILENT ECO fans

# VSC-N - through wall valve circular



# Characteristics



# For a rough estimate it is possible for calculus. use directly the ${\sf R}_{\sf w}$ value of the wall

| 51 dB                                       |                                                                                  |  |
|---------------------------------------------|----------------------------------------------------------------------------------|--|
| 43 dB                                       | $R_w - D_{n,e} = 8 dB$                                                           |  |
| 20 m <sup>2</sup>                           |                                                                                  |  |
| 1                                           | 20 m <sup>2</sup> / 1 = 20 m <sup>2</sup>                                        |  |
|                                             |                                                                                  |  |
| Resulting reduction R <sub>w</sub> (walls): |                                                                                  |  |
| R <sub>res</sub> value for wall with valve  |                                                                                  |  |
|                                             | 51 dB<br>43 dB<br>20 m <sup>2</sup><br>1<br>R <sub>w</sub> (walls):<br>ith valve |  |

### Normalized difference in D<sub>n,e</sub> levels



The calculation can also be done using a general formula:

$$R_{res} = 10 \text{ x Log } \left( \frac{S}{(10 \text{ m}^2 \text{ x } 10^{-0.1 \times D_{os}}) + (S \text{ x } 10^{-0.1 \times R_o})} \right)$$

Where it is:

 $\mathbf{R}_{\mbox{\tiny res}}$  — the resulting reduced value for the wall with the valve

S – wall area

 $D_{n,e} - D_{n,e}$  value of the valve

R<sub>w</sub> - R-value of the wall without valve

| Туре      | D <sub>n,e,w</sub>                 |                                      |                               |  |  |
|-----------|------------------------------------|--------------------------------------|-------------------------------|--|--|
|           | porous wall with 120 mm insulation | porous wall with 35–70 mm insulation | solid wall without insulation |  |  |
| VSC-N 100 | 43                                 | 42                                   | 35                            |  |  |
| VSC-N 125 | 43                                 | 41                                   | 34                            |  |  |
| VSC-N 160 | 42                                 | 40                                   | 35                            |  |  |

D<sub>new</sub> - weighted normalised difference of levels

### Perforated wall element VSCZ





valve installation into the wall



installation of the valve in the wall using a perforated VSCZ wall element

<u>72</u>