DFR-E - Wirbel Anemostat mit festen Lamellen

technische Parameter

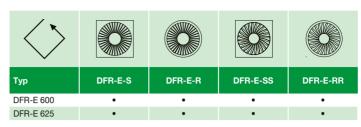
Ausführung

Wirbel Anemostate mit festen Lamellen.

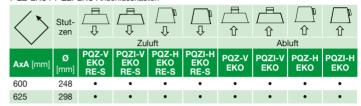
Konstruktion

Anemostaten sind aus Stahlblech mit weißer Einbrennlackierung (RAL 9010).

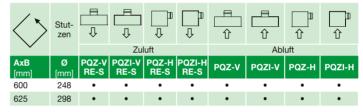
Installation


Anemostaten sind für den Einbau in die Decke für Zu-, und Abluft vorgesehen. Installationshöhe 2,6 - 4,0 m.

Montage


mittels Zentralschraube oder Seitenschrauben.

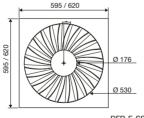
Zubehör


Anschlusskästen aus verzinktem Stahlblech, Standard oder isoliert. Zuluftkästen werden standardmäßig mit einer Regelklappe. Lochblech und einer Halterung zur Montage der Anemostatplatte geliefert. Abluftkästen werden standardmäßig nur mit einer Halterung zur Befestigung der Platte (Regelklappe auf Anfrage) geliefert.

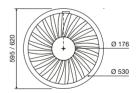
PQZ-EKO / PQZI-EKO Anschlusskästen



PQZ / PQZI Anschlusskästen



PDC / PDCI Anschlusskästen für DFR-E R, DFR-E RR


	AxA [mm]	Ø D [mm]	Ø E [mm]	Zul	uft	Abluft	
				PDC RE-S	PDCI RE-S	PDC	PDCI
598	700	248	590	•	•	•	•
623	700	298	615	•	•	•	•

DFR-E-S

DFR-E-SS

DFR-E-RR

598 / 623	
ES.	

DFR-F-R

Тур	A _k [m ²]	Q [m ³ /h]		L _{wa} [dB(A)]		X _(0,20) [m]		Δp , [Pa]	
тур		min	max	min	max	min	max	min	max
DFR-E 600 S/R	0,0368	400	900	23	46	3,3	7,4	10	50
DFR-E 625 S/R	0,0368	400	900	23	46	3,3	7,4	10	50
DFR-E 625 SS/RR	0,0365	350	810	23	43	3,2	7,3	10	50
DFR-E 600 SS/RR	0,0365	350	810	23	43	3,2	7,3	10	50

Q [m³/h]

DFR-E - Wirbel Anemostat mit festen Lamellen

Bestellkode

Wirbel Anemostat

DFR-E-600 R 1 2

- 1 Größe des Anemostaten
- 2 Ausführung
 - S eckige Platte
 - R runde Platte
 - SS eckige Platte mit
 - unterschiedlicher Schlitzgeometrie
 - RR runde Platte mit
 - unterschiedlicher Schlitzgeometrie

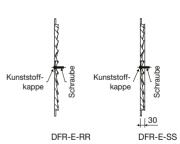
Anschlusskästen PQZ / PQZI


PQZ-V 600 RE-S

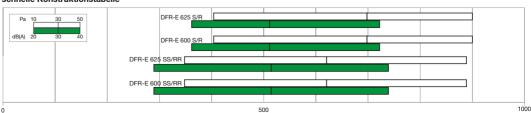
- 1 Ausführung
 - PQZ Standard
- PQZI mit äußerer Isolierung 6 mm
- 2 Anschluss
 - V vertikal
 - H horizontal
- 3 dimensionale Reihe von Kästen
- 4 RE Regelklappe (Zuluft/Abluft)
- 5 S Lochblech (Zuluft)

Anschlusskästen PQZ EKO / PQZI EKO

PQZ-V-EKO 600 RE-S


- 1 Ausführung
 - PQZ Standard
 - PQZI mit Mirelon-Außenisolierung PQZX – mit Armaflex-Außenisolierung
- 2 Anschluss
 - V vertikal
 - H horizontal
- 3 dimensionale Reihe von Kästen
- 4 RE Regelklappe (Zuluft/Abluft)
- 5 S Lochblech (Zuluft)

Ergänzendes Bild



DFR-E-S

DFR-E-SS

schnelle Konstruktionstabelle

Erläuterungen

Q [m³/h] – Luftstrom; A_k [m²] – freie Austrittsfläche; Δp , [Pa] – Gesamtdruckverlust; L_{aa} [dB(A)] – Schallleistung; X_{aa} [m] – Luftstrombereich zum Erreichen einer angenehmen Luftgeschwindigkeit im Wohngebiet von 0,20 m/s