

2–12

80

INT. Ø100

46

KGEZ-05

Technical parameters

CTVK inlet plate valve

The valve is made of steel plate coated with white RAL 9003 baked-on paint. The plate valve has a foam tape seal which, together with the mounting ring, ensures a perfect seal. Adjustment of the valve is made by increasing or decreasing the valve outlet slot, adjusting with a screwdriver. Mounting frames KGEZ-01, KGEZ-05 and KGEZ-43 are made of galvanized sheet metal.

- · for air supply
- · suitable for use in offices, buildings, etc.
- · wall mounting
- · good adjustment parameters
- · quick and easy installation
- · easy air flow measurement

Installation

The KGEZ mounting ring is attached to the duct with screws or rivets. For the KGEZ-43 version, it can be integrated into vertical building constructions.

Measurement and control

Flow control is performed by increasing or decreasing the valve outlet slot, which changes the setting dimension "s" (mm). Air flow measurement is carried out by measuring the pressure differential with a separate measuring tube. See flow diagrams for more details.

122

EXT. Ø99,3

KGEZ-01

weight:

weight:

0,4 kg

123

0,1 kg

KGEZ 43

Size	Α	В	С	D ₁	D ₂	weight [kg]	
KGEZ-43-100-080	120	39	148	125	79.3	0.4	
KGEZ-43-100-100	140	39	98	125	99.3	0.4	

Flow control and measuren	nent
q = k√∆p_m [l/s, Pa]	q = 3.6 k√∆p_m [m³/h, Pa]

 $\Delta \mathbf{p_m} = (\mathbf{q_v/k})^2$ [Pa, I/s] ∆p_m = (q_v/3.6k)² [m³/h, Pa]

	CTVK 100	s, mm	2	3	4	5	6	8	10	12
flow control	value	k	0.48	0.71	0.94	1.2	1.4	1.8	2.2	2.7

Characteristics

installation examples

Sound power levels Lw

50

10 2

► Δp., Pa 20 ć

► q, l/s

Correction K _{oct} (dB)									
CTVK		Medium frequency octave bands (Hz)							
	63	125	250	500	1000	2000	4000	8000	
100	2	-3	-3	0	0	-3	-6	-10	

5

10

Sound power levels in octave bands are obtained by adding the Koct corrections given in the table to the total sound pressure level Lp10A, dB(A) according to the following formula:

Lwoct = Lp10A + Koct

Correction Koct is the average value over the range of use of the CTVK device.

Warning:

If the KGEZ-43 mounting frame is used, the sound power is increased by 3 dB(A).

Noise attenuation AL

40

8 8

20

Noise attenuation ΔL (dB)								
CTVK	Medium frequency octave bands (Hz)							
	63	125	250	500	1000	2000	4000	8000
100	24	20	18	12	10	10	10	10

The average noise attenuation ΔL from the duct to the room including the reflection at the end of the connecting duct in the ceiling installation is given in the table above.

Explanatory notes

qv	flow	(l/s), (m³/h)
∆pt	total pressure drop	(Pa)
L _{p10A}	sound pressure level at attenuation	
	attenuation 4dB (10 m ² sabin)	[dB(A)]
LWoct	sound pressure level at room attenuation	(dB)
ΔL	noise attenuation	(dB)
Koct	correction	(dB)