

Informieren Sie sich über Kunststofflüfter in explosionsgeschützter Ausführung

II2G Ex d IIB T4, II2G Ex e II T3, II2G Ex d IIB+H2 T4 (motor Ex d IIC T4)

Тур	Α	В	B1	B2	С	E	F	L	M	ØN	ØD
CMPB/T 140	410	480	180	250	130	125	210	350	100	140	140
CMPB/T 160	445	525	200	260	150	125	210	440	130	160	160
CMPB/T 200	590	700	275	360	240	160	295	480	182	200	200
CMPB/T 250	790	905	375	465	290	200	486	620	215	250	250
CMPT 315	970	1069	579	590	390	305	390	765	257	315	315

Beratung und Vorschlag Tel.: +420 724 914 665 Tel.: +420 720 039 369

technische Parameter

Gehäuse

Das Spiralgehäuse des Radialventilators ist aus Polypropylen, max. Temperatur der geförderten Luft 60 °C. Der Ventilator wird mit der Gehäuseausrichtung LG 0 geliefert und der Winkel der Achse der Druckdüse kann während der Installation geändert werden. PVC Version für die Größen 160 - 355 auf Sonderbestellung.

Laufrad

ist radial mit vorwärtsgekrümmten Schaufeln aus Polypropylen.

Motor

Asynchronmotor mit Kurzanker, Isolationsklasse F, Kugellager mit Fettfüllung auf Lebensdauer. Motor ohne Luftstrom. Schutzart IP55.

Klemmenkasten

befindet sich am Motor.

Montage

wird ab Baugröße 160 zum Montagesockel, der Bestandteil des Ventilators ist. Aus der Ventilator wird nach dem Anschluss an das

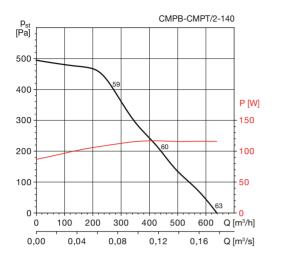
vorgesehene Rohrnetz gestartet, möglicherweise mit geschlossener Saug- oder Druckseite, um den Ventilator nicht zu überlasten. Nach dem Anlaufen ist die korrekte Drehrichtung des Laufrades zu prüfen und der Strom zu messen, der den Nennstrom des Ventilators nicht überschreiten darf. Wenn die aktuellen Werte höher sind, ist es notwendig, die Regulierung des Rohrleitungsnetzes zu überprüfen. Ein Überstromrelais oder ein anderer geeigneter Motorschutz muss in der Lüfterversorgung enthalten sein. Bei Überlastung des Motors öffnet der Thermoschutz den Steuerkreis des Schützes und schaltet den Lüftermotor ab. Wenn dieser thermische Motorschutz in Betrieb ist, signalisiert er einen schwerwiegenden anormalen Betriebsmodus. In diesem Fall müssen die Regulierung des Rohrnetzes und die elektrischen Parameter des Motors und der Elektroinstallation überprüft werden. Werden die Ventilatoren ohne diesen Schutz betrieben, erlischt der Anspruch auf Motorschaden. Der Schrank darf keine mechanischen Spannungen von Rohrverteilungen übertragen. Es muss ein flexibler Rohranschluss verwendet werden.

Zubehör

- CMP Motorhaube
- MFP Flextülle
- CARP Steuerklappe
- APP Ausblasstöck CTP Regenhaube

Hinweise

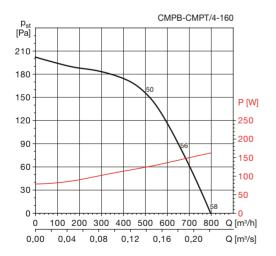
Die Ventilatoren eignen sich aufgrund ihrer Konstruktion für lange Luftleitungen in verschiedenen technologischen und lufttechnischen Anwendungen, in der chemischen Industrie. Petrochemie und Laboratorien. Es ist nicht zum Absaugen von Holz- und Sägemehl oder anderen brennbaren oder explosiven Mischungen geeignet.

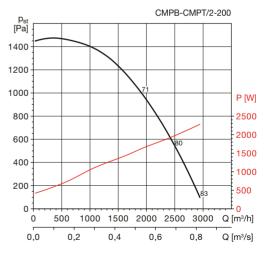

Warnung

Bei der Auslegung ist die exakte chemische Zusammensetzung der transportierten Stoffe zu ermitteln, bei Unklarheiten ist die Eignung des Ventilators mit dem Hersteller abzustimmen. Für die Ventilatorkonstruktion gelten die gleichen Regeln wie für alle Radialventilatoren mit vorwärtsgekrümmten Schaufeln.

Тур	Umdrehungen [min ⁻¹]	Rohr [mm]	Eingangsleistung [kW]	Strom [A]	Spannung [V]	Durchfluss (0 Pa) [m³/h]	ak. Druck* [dB(A)]	Gewicht [kg]	Regler
CMPB/2-140	2700	140	0,09	1,15	230	615	60	6,2	_
CMPT/2-140	2750	140	0,09	0,7/0,4	230/400	615	60	6,4	VFVN-020-3L-3
CMPB/2-160	2850	160	0,37	2,87	230	1150	69	11,3	_
CMPT/2-160	2820	160	0,37	1,9/1,1	230/400	1150	69	10,8	VFVN-020-3L-3
CMPB/4-160	1370	160	0,25	2,3	230	830	54	11,3	_
CMPT/4-160	1360	160	0,25	1,04/0,6	230/400	830	54	10,8	VFVN-020-3L-3
CMPB/2-200	2820	200	1,50	10,0	230	3100	81	16,6	_
CMPT/2-200	2870	200	1,50	6,1/3,5	230/400	3100	81	17,6	VFVN-020-3L-5
CMPB/4-200	1350	200	0,37	3,06	230	1850	66	18,1	_
CMPT/4-200	1370	200	0,37	1,82/1,05	230/400	1850	66	17,6	VFVN-020-3L-3
CMPB/4-250	1350	250	1,50	9,9	230	3650	69	28,9	_
CMPT/4-250	1420	250	1,50	3,5	400	3650	69	35,2	VFVN-020-3L-5
CMPT/2-315	2800	315	3,00	5,6/4,3	230/400	5450	94	60,0	VFVN-020-3L-6
CMPT/4-315	1430	315	2,20	4,9	400	5800	77	59,8	VFVN-020-3L-6

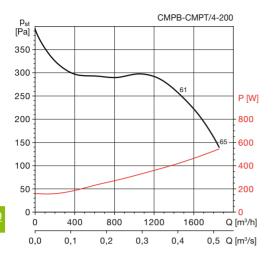
^{*} Schalldruck gemessen im freien Schallfeld in 1.5 m Abstand.


Eigenschaften



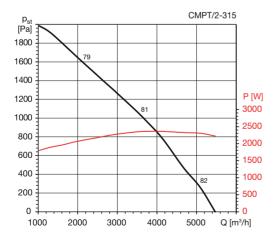
p _{st}		СМРВ	-CMPT/2-160
[Pa]			
800			
700		68	
600			
500			P [W]
400			771 800
300			600
200			400
100			200
0 1	000 400		1000 0 [3/-]
0	200 400	600 800	1000 Q [m³/h]
0,0	0,1	0,2	0,3 Q [m³/s]

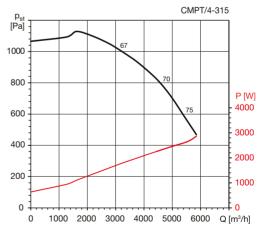
Schallleistung LwA in Oktavbändern in dB(A)											
Hz		63	125	250	500	1000	2000	4000	8000	\pmb{L}_{WA}	
Saugen	В	46	52	57	71	74	69	67	55	77	
	М	46	50	56	70	72	66	61	51	75	
	Н	44	53	59	66	72	62	58	50	74	
Ver- schiebung	В	31	48	61	71	73	71	69	56	77	
	M	32	48	61	70	69	66	63	48	74	
	Н	35	51	63	66	66	61	57	48	71	



Schallleistung LwA in Oktavbändern in dB(A)											
Hz		63	125	250	500	1000	2000	4000	8000	\mathbf{L}_{wA}	
Saugen	В	35	45	54	63	69	66	62	56	72	
	М	31	44	55	62	67	63	59	53	70	
	Н	27	39	51	58	62	57	53	48	65	
	В	41	51	66	66	66	64	64	57	72	
Ver- schiebung	M	36	45	63	59	64	63	62	54	70	
	Н	31	41	55	58	61	60	60	49	66	

Schallleistung L _{wA} in Oktavbändern in dB(A)											
Hz		63	125	250	500	1000	2000	4000	8000	L_{WA}	
Saugen	В	57	69	76	85	97	89	83	80	98	
	M	59	67	77	84	93	87	81	78	95	
	Н	60	66	78	83	88	84	79	75	91	
Ver- schiebung	В	78	85	91	91	94	91	85	81	99	
	M	65	68	83	85	91	89	83	79	94	
	Н	66	67	79	82	87	86	81	75	91	


Eigenschaften

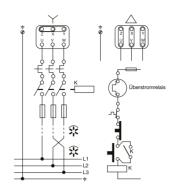


p _{st}	CMPB-CMPT/4-250
[Pa]	
700	
600	63
500	P [W]
400	1000
300	800
200	600
200	400
100	200
0 1	69 0
	500 2000 2500 Q [m³/h]
0,0 0,1 0,2 0,3 0	,4 0,5 0,6 0,7 Q [m³/s]

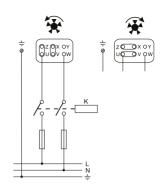
Schallleistung L _{wA} in Oktavbändern in dB(A)											
Hz		63	125	250	500	1000	2000	4000	8000	\textbf{L}_{WA}	
Saugen	М	45	55	66	72	76	70	65	59	79	
	Н	49	55	63	68	73	67	62	55	76	
Verschiebung	М	54	63	74	72	75	72	67	60	80	
	Н	49	56	66	69	72	69	63	55	76	

Schallleistung LwA in Oktavbändern in dB(A)										
Hz		63	125	250	500	1000	2000	4000	8000	\textbf{L}_{WA}
Saugen	В	51	60	70	77	81	75	70	64	84
	М	48	58	68	74	78	72	67	61	81
	Н	53	59	66	70	75	69	63	56	78
	В	66	74	81	81	81	77	72	65	87
Verschiebung	М	58	66	76	74	78	74	68	61	82
	Н	53	60	68	71	74	70	64	56	78

Schallleistung LwA in Oktavbändern in dB(A)											
Hz		63	125	250	500	1000	2000	4000	8000	L_{WA}	
Saugen	В	57	65	75	88	89	93	82	73	96	
	М	62	68	85	88	88	91	79	70	95	
	Н	62	72	83	89	88	88	77	68	94	
	В	58	72	75	87	92	84	87	75	97	
Verschiebung	Μ	61	73	83	93	95	95	86	75	100	
	Н	63	75	85	92	94	95	83	73	99	


Schallleistung LwA in Oktavbändern in dB(A)										
Hz		63	125	250	500	1000	2000	4000	8000	\boldsymbol{L}_{wA}
Saugen	В	58	71	78	84	86	80	75	67	89
	М	54	65	72	78	81	75	70	62	84
	Н	51	63	70	76	78	73	66	59	81
	В	65	76	86	89	90	85	79	69	94
Verschiebung	М	66	77	87	89	91	87	79	68	95
	Н	66	77	86	89	91	87	79	68	95

Leistungsmerkmale

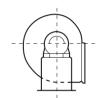

- Q: Durchfluss in m3/h und m3/s
- pst: statischer Druck inPa
- P: Leistungsaufnahme in W
- Kennlinie gemessen nach ISO 5801 und AMCA 210-99
- Schalldruck in dB(A), gemessen in 1,5 m Abstand auf der Saugseite, in einem freien akustischen Feld

Geräuschparameter

- akustische Leistung in Oktavbändern für Ansaugen und Ausblasen
- die angegebenen Werte gelten für einzelne Arbeitspunkte (B - niedriger statischer Druck, M - mittlerer statischer Druck, H hoher statischer Druck)
- gemessen nach ISO 13347-3 2004

Schaltplan CMPT Y oder Δ Schaltung je nach Typenschild und geliefertem Motortyp

CMPB-Schaltplan


Ergänzendes Bild

LG 0 Standard

LG 90

Gehäuserotationsoptionen (Lüfter werden aus der Motoransicht angezeigt)

LG 270

Die technischen und Geräuschparameter finden Sie in den einzelnen Punkten der Arbeitseigenschaften im Auswahlprogramm EASYVENT unter www.solerpalau.com

PP-Laufrad

Ø [mm]

140

160

200

250

315

Regenschutz

CTP 140

CTP 160

CTP 200

CTP 250

CTP 315

Stopfen für Kondensatablaufloch

Kreisklappe

CARP 140

CARP 160

CARP 200

CARP 250

CARP 315

Zubehör

Tabelle des empfohlenen Zubehörs, Absaugung:

Тур	Saugen Ø [mm]	flexible Manschette	Kreisklappe	Motorhaube
140	140	MFP 140	CARP 140	CMP 140
160	160	MFP 160	CARP 160	CMP 160
200	200	MFP 200	CARP 200	CMP 200
250	250	MFP 250	CARP 250	CMP 250
315	315	MFP 315	CARP 315	CMP 315

MFP flexible Manschette

Tabelle des empfohlenen Zubehörs, Verdrängung: Verdrängungs kreisförmiges

Auspuffstück

APP 140

APP 160

APP 200

APP 250

APP 315

CMP Motorabdeckung

CTP Regendach

APP Ausblasstutzen

Тур

140

160

200

250

315